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Many axisymmetric vortex cores are found to have an external azimuthal velocity B, 
which diverges with a negative power of the distance r to their axis of symmetry. This 
singularity can be regularized through a near-axis boundary layer approximation to 
the Navier-Stokes equations, as first done by Long for the case of a vortex with 
potential swirl, 2: - r- l .  The present work considers the more general situation of a 
family of self-similar inviscid vortices for which 2: - rrnp2, where m is in the range 
0 < m < 2. This includes Long’s vortex for the case m = 1. The corresponding solutions 
also exhibit self-similar structure, and have the interesting property of losing existence 
when the ratio of the inviscid near-axis swirl to axial velocity (the swirl parumeter) is 
either larger (when 1 < m < 2) or smaller (when 0 < m < 1) than an m-dependent 
critical value. This behaviour shows that viscosity plays a key role in the existence or 
lack of existence of these particular nearly inviscid vortices, and supports the theory 
proposed by Hall and others on vortex breakdown. Comparison of both the critical 
swirl parameter and the viscous core structure for the present family of vortices with 
several experimental results under conditions near the onset of vortex breakdown show 
a good agreement for values of m slightly larger than 1. These results differ strongly 
from those in the highly degenerate case m = 1. 

1. Introduction 
Axisymmetric swirling flows at high Reynolds numbers have several distinctive 

properties, including the phenomenon of vortex breakdown and the fact that swirl and 
axial jets appear often as inseparable features. These phenomena have been discussed 
widely, although they remain largely unexplained. For instance, the issue of whether 
viscosity is or is not an important actor in this play has been discussed for quite some 
time (e.g. Batchelor 1964), but it remains unsettled, as evident from the fact that 
vortex breakdown has been interpreted by some as a purely inviscid phenomenon (as 
in Benjamin’s 1962 theory, or in Batchelor’s 1967 model and its extension by Buntine 
& Saffman 1995), and as a fundamentally viscous problem by others (as in Hall’s 
analogy to boundary layer separation, e.g. Hall 1972). Of course, broad fluid 
mechanical questions such as this can rarely be answered in general, as illustrated for 
instance by instability problems, governed sometimcs, though by no means always, by 
inviscid criteria. In the present article we consider a simple model problem involving 
a family of nearly inviscid axisymmetric vortices, for which viscosity definitely plays a 
key global role. 

The flows analysed in this work are exact solutions to the axisymmetric boundary 
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layer approximation of the Navier-Stokes equations. They match a class of inviscid 
vortical motions whose axial and azimuthal velocities and pressure vary near the axis 
as powers of the distance r to the axis: 

with 0 < m < 2. In the above expressions, (u,u, w) is the velocity field in polar 
cylindrical coordinates ( r ,  8, z ) ,  p is the pressure, p the fluid density, 2 = k 1. and W, and 
L are arbitrary (positive) constants. Although equations (1)-(3) have cylindrical 
symmetry, they correspond to the near-axis behaviour ( r / z  4 1) of a family of conically 
similar solutions to the incompressible Euler equations (Fernandez-Feria, Fernandez 
de la Mora & Barrero 1995). The radial velocity u is shown to be zero at the lowest 
order. The case m = 1 corresponds to a potential vortex (v - r-'), which has been 
widely considered in the literature (see references given below). However, for both 
confined and free vortices, the quasi-inviscid flow around viscous vortex cores is found, 
in general, to be non-potential, with an azimuthal velocity proportional to rPn, where 
the power n ranges between 0.4 and 1 (1 < m < 1.6 in (1)-(3)), depending on the 
particular physical situation (see e.g. Ogawa 1993 for a review on experimental data of 
many different types of vortices). 

The swirl parameter, L, or ratio between azimuthal and axial inviscid velocities near 
the axis, 

plays an important role in vortex flows because numerical and experimental results (see 
e.g. Spall, Gatski & Grosh 1987) show that, for high Reynolds numbers, vortex 
breakdown occurs when the ratio v / w  at the edge of the viscous core of the vortex is 
larger than a critical value which is near 1.5 (see $5 for details). This parameter also 
characterizes solution breakdown in the present family of vortices. 

The axial and azimuthal velocities (1)-(2) and their derivatives with respect to r are 
singular at the axis when 0 < m < 2. Therefore, even at very high Reynolds numbers, 
it is inconsistent within the framework of the Navier-Stokes equations to ignore 
viscosity in a certain narrow region near the axis. The structure of the viscous core for 
a quasi-free vortex such as (2) has sometimes been modelled using semi-empirical 
expressions which behave as a rigid rotation for small r ,  and match a negative power 
of radius for large r (see e.g. Vatistas, Kozel & Mih (1991) and Ogawa 1993). Here we 
shall obtain exact self-similar solutions to the near-axis boundary layer approximation 
of the Navier-Stokes equations. In contrast to other similarity solutions for viscous 
vortexcores(e.g.Halll961; Stewartson&Halll963 ;Mayer&Powell1992,amongothers), 
ours match with external vortical inviscid flows which are exact solutions to the Euler 
equations. As mentioned above, a near-axis ( r / z  1) azimuthal velocity proportional 
to a power of the radius (equation (2)) models the external inviscid flow observed in 
many real vortices. The case m = 1, where the complete Navier-Stokes equations admit 
exact conical solutions, has been studied extensively, both with and without swirl (e.g. 
Landau 1944; Squire 1951, 1952; Goldshtik 1960; Yih et al. 1982; Paull & Pillow 
1985a, b;  Pillow & Paull 1985; Bojarevics et al. 1989; Goldshtik & Shtern 1990; Sozou 
1992; Sozou, Wilkinson & Shtern 1994, among others). The boundary layer form of 
the swirling problem with rn = 1 and 1 = + 1 was first considered by Long (1958, 1961), 
and has been the subject of numerous subsequent investigations (e.g. Burggraf & Foster 

L = lQ/Wlr,*+o, (4) 
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1977; Foster & Duck 1982; Foster & Smith 1989; Foster 8.1 Jacqmin 1992; Khorrami 
& Trivedi 1994; Drazin, Banks & Zaturska 1995). 

2. Governing equations 
In cylindrical polar coordinates, the near-axis boundary layer approximation to the 

Navier-Stokes equations (sometimes called guasi-cylindrical approximation in the 
literature on vortex breakdown) for a steady incompressible and axisymmetric flow 
may be written as 

i a  2w 
r 8r aZ  
--(ru)+- = 0, ( 5 )  

( 6 )  

(7) 

(8) 

uz - 3(PlP> -- - 

r c?r ’ 

where 11 is the kinematic viscosity. The continuity equation ( 5 )  is automatically satisfied 
by using the stream function !P for the meridional motion: 

(9) 
1 PY 
r 2z ’ 

- 
1 c?Y 
r ar ’ 

w=-- - u=- - -  

We define the boundary layer variable of order one 

7 = r / m  (10) 
with S/z 4 1. Because the matching conditions (1)-(3) involve simple power laws and 
there are no external characteristic lengths, the problem has a self-similar structure. 
Independently of the form of 6(z), the stream function within the thin viscous region 
must take the form 

as follows from the standard boundary layer condition that the convective and viscous 
terms must be comparable, w - vz /S2 ,  and from the relation between Y and w, namely 
w - Y/S2. The thickness S of the boundary layer is determined by the particular form 
of the flow far from the viscous region, which may be written from equations (1) and 
(10) as 

(Only the case I = + 1 is considered because no solutions exist for I = - 1, as shown in 
the Appendix.) Comparison between (11) and (12) yields 

7- f  co, Y+(w,/m)rm = (W,/m)Gmym. (12) 

6(z) = (mvz/W,)l’m. ( 1  3) 
We now complete the definition of the boundary layer variables through 

such that the boundary conditions they satisfy at infinity involve pure numbers and 
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With these definitions, and using as independent variable 5 = q2, the boundary layer 

y2 = 2 q ,  (16) 

2-yf’-2fy’-- m-1 f Y -  - 4-(5y’)--, d Y 
m 5 d5 5 

2-m 1 d 
m 2m 4 

- 7 2  +j-y + - [(Z - m) p+ 5P’] = - 2 - (V), 

where primes denote differentiation with respect to 5. The meridional velocity 
components are given by 

w = - 2 f ,  vz u = -;( f-). 25Y 
LY2 ’ 

We shall look for solutions where p ,  w and Y are finite at the axis. The second 
condition requires that f / [  be finite at 6 = 0. Because (16) is singular at 5 = 0, y2/5 must 
also be finite at 6 = 0. Accordingly, we will consider functions with the following 
behaviour as 5 --f 0 : 

f N 5, y - p, p - - 1. (20) 

3. Solutions 
To integrate numerically equations (16)-(18) one must know the behaviour off, y 

and ,8 near the axis 5 = 0, and at infinity. The regularity conditions (20) require the 
following near-axis behaviour : 

f=fl  5+f, 5’ +f3 t3 + . . . 
Y = 51/2(go +g, 5 + &  cz + . . $1, 

P = P o  + P1 5 + P 2  t2 + . . - 3  

(21) 
(22) 

(23) 
which substituted into equations (16t(lS) determines completely all the coefficientsf,, 
gi and Pi in terms of the first three constants of the expansion f l ,  go and Po. For the 
lower-order terms one finds 

P I  = g:/2, P, = gog1/2, (24) 

gl = -sofi/(4m). (26) 
Although there are three degrees of freedom to start the integration at 5 = 0, one of 
them is effectively irrelevant as a consequence of the fact that equations (16)-(18) are 
invariant under the uniparametric group of transformations of scale 

f-5 5- c5, y-f y / c ,  P+P/C2. (27) 
Similarly, the coefficients entering in the power laws (15) for the boundary condition 
at 5 4  00 can be re-scaled, so that their absolute magnitude also becomes irrelevant. 
For convenience we choose C in (27) such that Po = - 1, so that the initial and final 
conditions are, respectively, 

5- 0, 

f = A , [ +  ..., y=A,[1/2+ ..., p=-1+ ...; (28) 
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FIGURE 1. Velocity profile in the boundary layer for (a)  m = 8/5 and (b) m = 4/5 (A, = 2). The 
continuous line represents S2w/(vz) =f(~)/r ;  the dashed line, ru/v = - ~f ’ (~ ) /m+J( .q )  and the 
dotted line, Szv/(vz) = y(il/). (See (14) and (19).) 

(+ a, 

with 

Thus, starting at the origin with two degrees of freedom A, and A,,  one reaches the 
region [ p 1 also with two degrees of freedom: C, determining the proper rescaling 
required in the solution found, and B, fixing the swirl parameter L arising at the Euler 
level. Linear analysis as <+ 00 shows that the behaviour is 

f -+ ( c a y  y + a B p - 2 ) ’ 2 ,  p +- (B2/[2(m - 2)]) 6-2; (29) 

A, = f, C, A ,  = go B = mLCm/2. (30) 

f- (C&-p2[ 1 + PgA- + Q.g-1, 

h2 +(m - 1) h +m -2 + (m - 1) L2/2 = 0, 

(3 1)  

(32) 
both being real and of opposite signs for 0 < m < 2. P and Q in (3 1) are free constants. 
The term proportional P dominates as 6 B 1, where Q is irrelevant. Accordingly, if 
one starts the numerical integration of equations (16)-(18) at 6 = 0 with behaviour 
(28), assigning arbitrary values to the two free constants A, and A,, one will not 
encounter the desired behaviour f = (C<)“/2 at infinity except for some exceptional 
trajectories for which the mode proportional to P is eliminated. As found by Long 
(1961) for the case rn = 1, this circumstance requires picking up a certain value of 
A,@,) for each real A ,  in the interval - 1/2/2 < A ,  < co. The behaviour is thus 
not drastically different in the whole range 0 < m < 2 from that found by Long for 
rn = 1. However, for m = 1 Long found that the swirl parameter L is always the 

where the exponents A, > A- are the roots of 
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0 

A ,  
FIGURE 2. Values of A,  (-.-.-), C"'' (---) and L (-) as functions of A ,  for which solutions 

exist in the cases (a) m = 8/5 and (b) m = 4/5. 

same, independently of the value of A,. In fact, for m = 1 equation (18) becomes 
f z  +ff"  + (/3+ [/?')/2 = - 2(v)', which may be integrated once to 

f' + p[/2 + 2 u  = constant, (33) 
where the constant vanishes as a result of the boundary conditions at the origin. As 
[+ co this first integral and (29)-(30) imply that 

In other words, although the axial flow and the swirl entered with independent 
intensities at the Euler level through the two constants W, and L, somehow the 
condition of regularity at the origin kills this double freedom and couples the amount 
of circulation unequivocally to the axial flow through L = 2/2. When m =I= 1, there is 
no analogue to the integral (33) so that L is not uniquely fixed. However, we find 
numerically that equations (16)-( 18) have solutions satisfying (28) and (29) only within 
a certain range of values of L which depends on m. This fact sometimes excludes 
swirlless flows. 

Our numerical study has been based on Long's method which identifies AZ(A1) by 
shooting. Figures 1 (a) and 1 (b) show two examples of the boundary layer structures 
for m = 8 / 5 , A ,  = 2, and m = 4/5, A ,  = 2, respectively. Figures 2(a) and 2(b) show the 
variation of the parameters A,, C"/' and L as functions of A ,  also for rn = 8/5 and 
m = 415, respectively. 

L = 2/2  (m = 1). (34) 
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FIGURE 3. Regions of solution existence for the near-axis boundary layer in (L,m)-space (shaded 
areas), which is below the curve L* for m > 1 and above it for m < 1. For m = 1 the only allowed 
value is L = 4 2 .  

m 

The dashed area of figure 3 shows the region of solution existence in (L,m)-space, 
bounded between the vertical line m = 1 and a critical curve L*(m). For m > 1, 
solutions exist only below the curve, so that the swirl cannot exceed an m-dependent 
maximum value given by that curve. For m < 1, the domain of existence is above the 
curve, and the swirl must be larger than a minimum value. For m = 1, all solutions are 
characterized by L = 4 2 .  Therefore, flows with an arbitrarily small swirl are allowed 
only for m > 1 ,  and flows involving mostly pure rotation may exist only for m < 1 .  
These domains of solution existence are a consequence of the fact that L(A,) shows a 
maximum for m > 1 (e.g. figure 2a), a minimum for m < 1 (e.g. figure 2b), and takes 
a constant value (L = 4 2 )  for m = 1. 

For the case m = 1, Long (1961) has provided a classification of the solutions 
based on the sign of the convective derivative of Bernoulli's function H = p / p  + u . u / 2  
along the axis. His analysis is straightforwardly generalized for all m in the range 
0 < m < 2. Thus, there are three types of solutions depending on whether A, belongs 
to one of the following intervals: [- 1 / 4 2 , 0 ] ,  [ 0 , 1 / 4 2 ]  and [1/1/2, co] (see figure 4). 
In the first case w and u change sign in the vicinity of the axis so that there is a near- 
axis region where the fluid moves towards the apex; hence, the flow within the viscous 
boundary layer is divided into two cells. In the second case, the motion is everywhere 
away from the apex, but the maximum axial velocity is not located at the axis. In the 
third interval the flow represents ajet with the maximum axial velocity at the axis. The 
frontier values A ,  = k 1 / 4 2  correspond to the zeros off2 in (25). 

An alternative classification of Long's vortices (m = 1 )  was provided by Burggraf & 
Foster (1 977) in relation to the momentum transfer or flow force 

J = 2x ( p / p  + w') I dr, r 
which, as shown by Long (1961), is constant along the axis. In fact, for rn = 1 and in 
our notation, the non-dimensional flow force M is given by 
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FIGURE 4. Axial velocity profiles, S 2 w / ( i u )  =f'(v)/v, for (a) m = 8/5 and (b) m = 4/5, and for several 
values of A,,  given on each curve. For A ,  < 0, the axial velocity is negative at the axis; for 
0 < A ,  < 1/2;'2, the axial velocity is positive at the axis, but its maximum is away from the axis; and 
for A ,  > 1/112 the maximum is at the axis. 

which does not depend on z ( B  is the scaling constant in (29)). A4 is a non-monotonic 
function of A,, having a minimum M = M *  FZ 3.75 for A ,  = A; x 0.2. Thus, for 
M > M*, two possible vortices exist, while there is no solution for A4 < M". Since 
A; < 1 / ~  2, solutions with A ,  < A; (termed by Burggraf & Foster as type I1 solutions) 
have the maximum of the axial velocity w away from the axis, while solutions with 
A,  > A: (type I) may have this maximum at the axis ( A ,  > l/.v'2), or away from it 
(AT < A,  < 1/2/2). Burggraf & Foster showed that only the type I1 solutions are 
physically meaningful (see next section). For w1 + 1, the flow force A4 is not constant; 
but we have a similar situation with regard to the swirl parameter L, which, like the 
flow force for the case rn = 1, does not depend on the axial coordinate. When 
0 < m < 1, two solutions exist for L > L*(m), and there is no solution for L < L*(m) 
(see figure 2b for the particular case m = 4/5); when 1 < m < 2, no solutions exist for 
L > L*(m), and there are two possible solutions for L < L*(nz) (figure 2a,m = 8 / 5 ) .  
The value of AT(m) corresponding to L*(m) is found to be almost independent of m, 
being approximately equal to 0.1 for 0.9 < rn < 1.5. Following the classification of 
Burggraf & Foster, solutions for A ,  > AT and for A ,  < AT may be termed, respectively, 
as type I and type I1 solutions (see figure 5). 
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FIGURE 5. Maximum value of the axial velocity, S2w/(vz) l m a z  (continuous lines), and axial velocity at 
the axis, S2w/(vz) l l p o  = 2 4  (dashed lines), as functions of L for (a) m = 8/5 and (b) m = 4/5. In (a) 
there are two solutions for each value of L < L*(8/5) x 0.79 (A:(8/5) w 0.15); for (b), there are two 
solutions for L > L*(4/5) w 2.47(AT(4/5) w 0.28). These solutions are termed as type I solutions for 
A ,  > AT (lower continuous curve and upper dashed curve in (a), and upper curves in (b)), and type 
I1 solutions for A ,  < AT. 

4. Discussion of the results and conclusions 
The main conclusion of this study is that the axial singularities often appearing in 

axisymmetric inviscid swirling flows cannot always be regularized through thin 
viscous layers. As a result, a sharp boundary is established between some physically 
unacceptable inviscid flows and others whose existence is not forbidden by viscosity. 
For the axisymmetric inviscid flows considered, none with a near-axis motion directed 
towards the origin (and, therefore, away from the axis) may be regularized (see the 
Appendix for 1 = - 1). A similar conclusion had already been reached for the special 
case m = 1 by Yih et al. (1982). For 1 = 1, the criterion for acceptability of the inviscid 
flow may be cast in terms of restrictions on the inviscid swirl parameter L, in qualitative 
analogy with real vortex flows (e.g. Spa11 et al. 1987), or in terms of the flow force M 
for the special case m = 1. 

The fact that the solution of the near-axis boundary layer approximation to the 
Navier-Stokes equations for a family of vortices breaks down for values of a certain 
parameter above or below a threshold value supports the proposed explanation of the 
vortex breakdown phenomenon which relates it to boundary layer separation 
(Gartshore 1962 and Hall 1972, among others). According to this view, vortex 
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breakdown appears when the near-axis boundary layer equations governing 
approximately the viscous core of the vortex fail to have a solution. A complete picture 
of the phenomenon cannot be given just by a near-axis boundary layer approximation, 
because its solution breakdown may be a sufficient but not a necessary condition for 
vortex breakdown to occur (see, however, the work by Beran & Culik 1992 commented 
on below). However, we provide here a concrete clear-cut example which may illustrate 
this mathematical scenario for vortex breakdown. Actually, several among the main 
expectations from the theory are met in our example. For instance, there is indeed a 
drastic difference between those inviscid flows which are viable, and those with a 
slightly different value of L which are not; the transition is certainly of a catastrophic 
kind. Also, although the reasons leading to breakdown are strictly viscous, the 
resulting breakdown criterion in terms of the swirl parameter L (or M for rn = 1) is 
independent of viscosity, in agreement with observations at high enough Reynolds 
numbers (see below). This result is a natural consequence of a boundary layer theory 
where viscosity is absorbed within an inner variable, becoming irrelevant for some 
matters (e.g. existence), while remaining relevant for others (e.g. stresses). Although 
this result was not mentioned explicitly in Hall’s formulation, it was implicit from the 
analogous behaviour of the two-dimensional boundary layers. (For an example of 
when a similar inviscid criterion arises for strictly inviscid reasons, see Saffman’s 1992 
discussion of an older problem by Batchelor 1967.) The absence of viscosity from the 
matching conditions with the inviscid vortex is also manifest in equation (15). 

4.1. The special case m = I 

As discussed above, the boundary layer solutions for the case m = 1 are qualitatively 
different from those corresponding to m += 1. For rpl type vortices, Long’s first integral 
(33) makes it evident that solutions exist only for L = d2. Solutions are appropriately 
classified in terms of the so-called flow force parameter M ,  (35) : for M smaller than a 
critical value M* (Long’s value M* = 3.65 was corrected by Burggraf & Foster 1977 
to 3.75, in agreement with our results), no self-similar solutions exist; for M > M * ,  two 
possible solutions exist, termed by Burggraf & Foster as type I and type I1 solutions. 
These authors also found a most interesting result. They sought numerical solutions to 
the near-axis boundary layer equations matching Long’s inviscid asymptote, for given 
upstream conditions which did not necessarily coincide with the self-similar solution. 
When the value of the flow force M corresponding to their upstream condition (notice 
that M remains constant along the flow) was larger than the critical value M*,  they 
discovered that the boundary layer flow always evolved rapidly towards one of the two 
self-similar solutions (in particular to type I1 solutions; in later works, Foster & Duck 
1982, Foster & Smith 1989, Foster & Jacqmin 1992), found that Long’s vortex is 
unstable to small non-axisymmetric disturbances, but solutions of type I1 were more 
unstable than those of type I). But for M < M * ,  when no self-similar solution exists, 
the viscous region readily invaded much of the flow field. Burggraf & Foster could thus 
conclude that lack of existence of self-similar solutions to the boundary layer equations 
for a certain conical outer vortex implied that the viscous core could not be confined 
to a narrow axial region. The outer vortex could accordingly not survive for long and 
would necessarily break down. Their study provides compelling evidence in favour of 
Hall’s ~ e n a r i o  associating vortex breakdown to the failure of the near-axis boundary 
layer equations. 

These results Were confirmed, extended and put into a wider perspective in recent 
works by Goldshtik 8~ %tern (1990) and by Shtern & Hussain (1993). These authors 
‘Onsidered the conicalb’ similar SOlUtiOnS to the complete Navier-Stokes equations (ice. 
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case m = 1 ; they used these solutions as a model tornado, as did Burggraf & Foster 
with Long’s vortex). They found three branches of solutions forming a hysteresis loop 
with jump transitions between flow regimes. For high Reynolds numbers, two of these 
branches correspond, near the axis, to Long’s solutions of type I and 11, while the third 
(type I11 solutions) corresponds to a two-cell flow with a near-plane fan jet separating 
an inviscid, but rotational, outer cell from a potential flow inner cell. Interestingly 
enough, Shtern & Hussain (1993) find that, for decreasing M ,  a solution of type I 
jumps, when M = M * ,  to a solution of type 111 with a two-cell flow structure. They 
have related this phenomenon to vortex breakdown, since the potential inner cell 
resembles the bubble structure with recirculating motion observed in some forms of 
vortex breakdown. They also find the opposite phenomenon, of abrupt vortex 
consolidation: for increasing M ,  when M reaches another critical value, a solution of 
type I11 jumps to a type I solution, so that a two-cell flow suddenly reorganizes itself 
into a near-axis swirling jet. The description given by Shtern & Hussain of the vortex 
breakdown phenomenon for r-l type vortices supports Hall’s analogy with boundary 
layer separation, though they believe that the failure of the near-axis boundary layer 
approximation is associated to a bistability phenomenon, which changes the global 
flow pattern, in close connection with the vortex breakdown theory of Leibovich (1978, 

4.2. The case m + 1 
For the wider class of flows with 0 < m < 2 considered here, we have shown that only 
certain combinations of axial and azimuthal velocities are allowed, as mapped in figure 
3 .  Nearly pure rotation is definitely forbidden for m > 1, where the region of solution 
existence corresponds to 0 < L < L*(m), with L* < 4 2 .  Nearly pure axial motion is 
impossible for rn < 1. 

For m + 1 the flow force is no longer constant along the vortex, but the swirl 
parameter L plays a role somewhat analogous to M for Long’s vortices: when 
0 < m < 1 ,  two self-similar solutions exist for L > L*(m), and there is no solution 
for L < L*(m); when 1 < m < 2, no solutions exist for L > L*(m), and there are two 
possible solutions for L < L*(m) (see figures 2, 3 and 5). These results, in particular 
those for 1 < m < 2, have a number of features in common with earlier numerical 
and experimental results for less idealized vortices. 

For instance, based upon previous theoretical, numerical and experimental results, 
Spa11 et al. (1987) proposed a criterion for the onset of vortex breakdown in terms of 
a local Rossby number, which is equivalent to the inverse of our swirl parameter L. 
According to it, vortex breakdown occurs when L is above a critical value L* which 
depends on the Reynolds number. For high Reynolds numbers, L* tends to a constant 
approximately equal to 1.5, in qualitative agreement with our results for 1 < m < 2. 
The agreement is quantitative (within experimental errors) for m = l+[L*(l+) = 2/21. 

More recently, Beran & Culik (1992) have solved numerically both the steady 
axisymmetric Navier-Stokes equations and their quasi-cylindrical approximation for 
swirling flows through pipes with a throat. They find that, for sufficiently large 
Reynolds numbers, vortex breakdown occurs abruptly above a critical value of the 
dimensionless vortex strength V (equivalent to our swirl parameter L) for the Burger 
vortex they use as the upstream boundary condition. For values of V (or L)  above this 
threshold (which for high Reynolds numbers is always around 1 3 ,  the solution of the 
near-axis boundary layer equations ceases to exist, jumping to another solution of the 
Navier-Stokes equations which models a typical bubble structure of vortex breakdown. 
Thus, the results of these authors also support Hall’s theory on vortex breakdown. They 
are also in agreement with the more recent results of Shtern & Hussain for r-l type 
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FIGURE 6. Comparison of experimental data by Vatistas et al. (1986) (a), Faler & Leibovich (1977) 
(0) and Robertson (1965) (A) with normalized azimuthal velocity profiles, F(T) ,  for m = 0.9, 1, 1.1, 
1.2 and 1.3 (continuous lines), all computed for A ,  = AT(m) zz 0.1. The upper dotted line corresponds 
to a Rankine vortex, and the lower one to an empirical model by Vatistas et ul. (1991). 

vortices, in the sense that there is a multiplicity of solutions of the Navier-Stokes 
equations, with sudden transitions (vortex breakdown) from a solution of the near-axis 
approximation to another one no longer modelled by this approximation. However, 
the parameter governing this transition in real flows is never the flow force of the r-l 
type vortices, but is the swirl parameter L, in agreement with the criterion of Spa11 
et al. and with the results of our model. 

The theoretical work by Keller, Egli & Exley (1985) (see also Escudier 1988, and 
Wang & Rusak 1995) must also be mentioned here. These authors proposed a two- 
stage theory for vortex breakdown, in some ways similar to Benjamin’s (1962) critical 
state theory, but with an initial isentropic transition, which accounts for the 
breakdown, before the non-isentropic one of the Benjamin’s theory. They have studied 
analytically this isentropic transition for a Rankine vortex, finding that breakdown 
occurs above a critical value of a swirl parameter (equivalent to our parameter L)  
which depends on the Reynolds number. For high Reynolds numbers, this critical 
value tends exactly to 4 2 ,  as in our results for M = l+. 

The fact that the relevant breakdown parameter found in experiments and in 
numerical simulations of vortex flows is never the flow force M ,  but a swirl parameter 
L, seems to indicate that the inviscid vortex around most real vortex cores is not exactly 
irrotational (m = 1 or v - r-’), but of the form u - rPn,  with power M in general smaller 
than one (rn larger than one), as otherwise corroborated by many experimental data 
(see e.g. Ogawa 1993). Furthermore, the close agreement between the observed 
L* sz 1.5 for high Reynolds numbers and the model value L*( 1’) = 2/’2 is an indication 
that the experimental circumstances where vortex breakdown has been studied for high 
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Reynolds numbers would have been in some way described by a slightly perturbed r-l 
type vortex. (Notice that our family of solutions shows that the case m = 1 is highly 
degenerate, since infinitesimal perturbations away from it lead from a region of 
existence with zero measure ( L  = 2/2), to a finite domain of existence 0 < L < 1 / 2  for 
m slightly larger than 1 (figure 3).) To support this, figure 6 compares the azimuthal 
velocity profiles for some values of m of the family of self-similar vortex cores given 
here with experimental data for several high Reynolds numbers vortex cores just before 
vortex breakdown compiled by Vatistas, Lin & Kwok 1986. The theoretical curves also 
correspond to critical conditions L = L*(m), for which AT(m) M 0.1. They have been 
normalized according to (36), which introduces no fitting parameter in the vertical 
scale : 

where rl,(m) is the position where y(7) has its maximum. The figure shows also the 
profile corresponding to the Rankine vortex, V = 7 for 0 d 7 < 1 and B = l / v  for 
1 6 7 < cc, and that of a simple model fitting the experimental data given by 
Vatistas et al. (1991), 2, = 7/(1+?)'/'. The differences between the various curves 
are typically smaller than the scatter of the experimental data, except in the region 
near the maximum. There, most data points lie between our self-similar profiles 
corresponding to m = 1 and m = 1.2, while Vatistas' experimental model is between 
m = 1.1 and 1.2. It is thus clear that our model flow with m slightly larger than unity 
represents quite well not only the azimuthal velocity profile near breakdown, but also 
the critical value of L. 

This work is dedicated to the memory of Professor Ignacio Da Riva, with whom two 
of the authors and former students (A.B. and J. F. M.) will always be in debt. It has 
been supported by the Direccion General de Investigacion Cientifica y Tecnologica of 
Spain, PB90-1023 and PB93-0974, and by the US National Science Foundation Grant 
CTS-93 1905 1. 

Appendix 
This paper has considered only the case l = f 1 in (l), when the inviscid flow in the 

vicinity of the axis moves upwards, with radial velocity towards the axis. No 
regularizing near-axis boundary layer solutions coupling to a member of the inviscid 
family considered exist in the opposite case when l = - 1. To prove this consider the 
behaviour of the solution of (16t(18) as 6+ co. Introducing the functions 

which tend to constants as 6- 00, into the boundary layer equations (16k(18), and 
linearizing around the far-field behaviour (29), one finds that h" - exp [ - l(CQm/2/m], 
with similar behaviour for k' and s'. Therefore, the modes associated with these higher- 
order derivatives decay exponentially at increasing 6, provided that 1 = 1, which is the 
case analysed above. When l = - 1, the behaviour is inverted and these modes grow at 
increasing 6. Solutions cannot therefore exist when l = - 1, as there are not enough 
available degrees of freedom to cancel all these divergences. Indeed, this can be shown 
explicitly for the case m = 1, for which equation (17) may be integrated once to 

h = f < - m / 2 ,  k = /j'C2-" , s = y((P-m)/2 2 (A 1) 
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where E is a free constant. For large 6, f tends to l(CQnli2, so that the right-hand side 
of (A 2) grows exponentially without bound if I = - 1. In order for y to satisfy the 
boundary condition at co, it is thus essential that E = 0, in which case y&l’z is constant 
throughout, and the boundary condition (28) at 6 = 0 cannot be met. 

The impossibility of a boundary layer solution at the axis when the near-axis outer 
flow is directed away from the axis was reported by Yih et al. (1982) who considered 
conical viscous flow fields proportional to r-l (case rn = 1 in our notation), solving 
numerically the complete Navier-Stokes equations in that case. They also gavc the 
physical explanation that, for that flow direction, there is no vorticity advection 
towards the axis to balance the outward viscous diffusion of vorticity away from the 
axis. 
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